Eigenvalue decay of positive integral operators on the sphere

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jackson Kernels: a Tool for Analysing the Decay of Eigenvalue Sequences of Integral Operators on the Sphere

Decay rates for the sequence of eigenvalues of positive and compact integral operators have been largely investigated for a long time in the literature. In this paper, the focus will be on positive integral operators acting on square integrable functions on the unit sphere and generated by a kernel satisfying a Hölder type assumption defined by average operators. In the approach to be presented...

متن کامل

Approximation numbers of integral operators on the sphere

This work derives sharp estimates for approximation numbers of positive integral operators on the sphere when the generating kernel satisfies an abstract Hölder condition defined by spherical convolutions with uniformly bounded bi-zonal kernels. The estimates are obtained via finite rank operators defined by both, certain generalized Jackson kernels and the operators appearing in the Hölder con...

متن کامل

Singular Integral Operators and Essential Commutativity on the Sphere

Let T be the C∗-algebra generated by the Toeplitz operators {Tφ : φ ∈ L∞(S, dσ)} on the Hardy space H(S) of the unit sphere in C. It is well known that T is contained in the essential commutant of {Tφ : φ ∈ VMO∩L∞(S, dσ)}. We show that the essential commutant of {Tφ : φ ∈ VMO∩L∞(S, dσ)} is strictly larger than T .

متن کامل

Eigenvalue Decay of Operators on Harmonic Function Spaces

Let Ω be an open set in R (d > 1) and h(Ω) the Fréchet space of harmonic functions on Ω. Given a bounded linear operator L : h(Ω) → h(Ω), we show that its eigenvalues λn, arranged in decreasing order and counting multiplicities, satisfy |λn| ≤ K exp(−cn ), where K and c are two explicitly computable positive constants.

متن کامل

Eigenvalue Decay of Integral Operators Generated by Power Series–like Kernels

We deduce decay rates for eigenvalues of integral operators generated by power serieslike kernels on a subset X of either Rq or Cq . A power series-like kernel is a Mercer kernel having a series expansion based on an orthogonal family { fα}α∈Zq+ in L 2(X ,μ) , in which μ is a complete measure on X . As so, we show that the eigenvalues of the integral operators are given by an explicit formula d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2012

ISSN: 0025-5718,1088-6842

DOI: 10.1090/s0025-5718-2012-02595-6